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Decentralized Execution
QMIX: Monotonic Value Function Factorisation for
Deep Multi-Agent Reinforcement Learning

Centralized Training

Tabish Rashid *' Mikayel Samvelyan “?> Christian Schroeder de Witt '
Gregory Farquhar ' Jakob Foerster ' Shimon Whiteson !

Abstract

In many real-world settings, a team of agents must
coordinate their behaviour while acting in a de-
centralised way. At the same time, it is often
possible to train the agents in a centralised fash-
ion in a simulated or laboratory setting, where
global state information is available and communi-
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QMIX - Overall Architecture
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QPLEX: Duplex Dueling Multi-Agent Q-Learning (2021, ICLR)
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Published as a conference paper at ICLR 2021

QPLEX: DUPLEX DUELING MULTI-AGENT
Q-LEARNING
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2Polixir Technologies, China
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QPLEX - Transformation network module
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QPLEX - Dueling Mixing network module
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Experiment @
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Experiment 2
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Transformer-Based Value Function Decomposition for Cooperative Multi-Agent Reinforcement Learning in
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Reinforcement Learning in StarCraft
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TransMix — Overall Architecture
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Experiment @
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2m.vs_1z Easy 99.7 95.3 100
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Experiment 2
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Experiment 3
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Attention-Guided Contrastive Role Representations For Multi-Agent Reinforcement Learning (2024, ICLR)
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Published as a conference paper at ICLR 2024

ATTENTION-GUIDED CONTRASTIVE ROLE REPRE-
SENTATIONS FOR MULTI-AGENT REINFORCEMENT

LEARNING

Zican Hu', Zongzhang Zhang?, Huaxiong Li', Chunlin Chen', Hongyu Ding', Zhi Wang'*
! Department of Control Science and Intelligent Engineering, Nanjing University
2 School of Artificial Intelligence, Nanjing University
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